How to manage AF and heart failure

Richard Schilling

Disclosures: speaker fees, honoraria and research grants - Biosense Webster, Medtronic, St Jude, Hansen Medical, Biotronik, Boston Scientific, Boerhinger; Daiichi Sankyo

DECLARATION OF INTEREST

- Research contracts

Classification of AF in heart failure

- AF caused by heart failure
- AF causing heart failure

Predictors of HF→AF

Similar to non HF patients

Natural history of HF→AF

- 197 pts
- no history of AF
- EF 20-30%
- Implanted devices capable of AF detection
- 2 year follow up

AF doesn't necessarily progress
Even in heart failure

Heart failure caused by AF

Rate related Ischaemia Ca handling Mechanical **Inflammatory** ↓LVED filling Neuroendocrine Beat to beat Sympathetic stimulation variation Pro-inflammatory state

Abnormal ventricular function

Predictors of AF→HF

- Less common than HF → AF
- Poor rate control >110 bpm
- AF can cause HF even when rate control is adequate

Management of AF and heart failure

- Step 1 Stroke prevention and HF optimisation
- Step 2 decide rate control or rhythm control
- Step 3 applying rate or rhythm control

Stroke prevention

Symptoms or type of AF do not predict risk

Stroke prevention in HF

- Bleeding risk Identify reversible risk factors
 - Hypertension
 - Alcohol
 - Drugs (aspirin)
- Renal dysfunction

- Rhythm control no \u2224prognosis/stroke risk in any RCT:
 - Rhythm control didn't work (drugs/cardioversion)
 - Anti arrhythmic drugs > risk than AF

- Analysis from Rocket AF
- HF in 71% vs 41% vs 62%

No AAD	12503	11865	11247	8201	4974	2132
Amiodarone	1132	991	904	624	359	118
Other AAD	536	464	422	305	169	69

- Two key questions
 - Is AF making symptoms worse?
 - Is AF causing heart failure?

Is AF making symptoms worse?

- In PAF do symptoms correlate with ECG?
- In persistent AF what is the response to DC cardioversion on amiodarone?

DC cardioversion on amiodarone

- Low risk
- Amiodarone may help maintain SR
- Patient can assess symptomatic benefit of SR
- Patient then choses
 - Rate control
 - Rhythm control
 - Maintain amiodarone or catheter ablation

- Do symptoms get worse with AF? no
- Is the HF caused by AF? no

Rate control to <110 bpm

Rate control in HF

- Beta-blocker or Ca²⁺-blocker
- Additional digoxin
- Personal preference Ca²⁺-blocker > digoxin
- CRT pacing +/- AV node ablation

- Do symptoms get worse with AF? not sure
- Is the HF caused by AF? no

Rate control

Then if fails

PAF correlate symptoms with ECG

DC cardioversion on amiodarone

- Do symptoms get worse with AF? yes
- Is the HF caused by AF? no

Rate control to 80 bpm (symptoms not prognosis)
If fails then
Rhythm control

- Is the AF causing symptoms? no or yes
- Is the HF caused by AF? yes

Catheter ablation

AF ablation in HF

N=50 pts
RCT of persistent AF puts and EF<50%
Optimal medical therapy for 1 month then
randomised to continued rate control or ablation

	ablation (26)	control (24)
EF	31.8±7.7	33.7±12.1
co-diagnosis of AF	15	13
months of AF	24	24

AF ablation and HF with systolic dysfunction - outcome

AF ablation and HF with systolic dysfunction - outcome

Meta-analysis of AF ablation in HF

- ↑ in EF with ablation
- Mean 13.5%(95% CI 11-16%)

Meta-analysis of AF and HF

Ablation success † in pts with short history of AF/HF

Meta-analysis, n=1838

Time in AF and recurrence risk Time in HF and recurrence risk

Identifying AF causing HF

	ablation (26)	control (24)
Patients with normalisation EF	5 (25%)	0
co-diagnosis of AF	5 (100%)	n/a

If they had symptoms from AF then they would have been treated prior to HF 50% of pts have no AF symptoms

Identifying AF→ HF pts

Patients with greatest response:

- 1. AF precedes or co-incident with HF
- 2. ECG normal other than AF
- 3. "Idiopathic" HF
- 4. No gad enhancement on MRI Patients with some responseAF precedes or coincident with heart failure
 - 1. Deterioration in QOL with AF, not improved by rate control

Who has the greatest chance of success

- PAF¹
- Recent onset AF
- LA size²

AF ablation the outcome

38 male 2 week incr SOB then pulmonary oedema

AF ablation the outcome

courtesy Dr Sam Mohiddin Barts Heart centre

Before

After

Practical management of AF heart failure patients

Conclusions

- Close liaison between HF and EP team
- Clear protocols for management of AF/HF
- Prioritise stroke and heart failure meds
- Do not delay progress along the AF path
- Patient selection critical for best outcomes